
Published as a conference paper at ICLR 2017

DISTRIBUTED SECOND-ORDER OPTIMIZATION USING
KRONECKER-FACTORED APPROXIMATIONS

Jimmy Ba
University of Toronto
jimmy@psi.toronto.edu

Roger Grosse
University of Toronto
rgrosse@cs.toronto.edu

James Martens
University of Toronto
and Google DeepMind
jmartens@cs.toronto.edu

ABSTRACT

As more computational resources become available, machine learning researchers
train ever larger neural networks on millions of data points using stochastic gradi-
ent descent (SGD). Although SGD scales well in terms of both the size of dataset
and the number of parameters of the model, it has rapidly diminishing returns as
parallel computing resources increase. Second-order optimization methods have
an affinity for well-estimated gradients and large mini-batches, and can therefore
benefit much more from parallel computation in principle. Unfortunately, they
often employ severe approximations to the curvature matrix in order to scale to
large models with millions of parameters, limiting their effectiveness in practice
versus well-tuned SGD with momentum. The recently proposed K-FAC method
(Martens and Grosse, 2015) uses a stronger and more sophisticated curvature ap-
proximation, and has been shown to make much more per-iteration progress than
SGD, while only introducing a modest overhead. In this paper, we develop a ver-
sion of K-FAC that distributes the computation of gradients and additional quan-
tities required by K-FAC across multiple machines, thereby taking advantage of
the method’s superior scaling to large mini-batches and mitigating its additional
overheads. We provide a Tensorflow implementation of our approach which is
easy to use and can be applied to many existing codebases without modification.
Additionally, we develop several algorithmic enhancements to K-FAC which can
improve its computational performance for very large models. Finally, we show
that our distributed K-FAC method speeds up training of various state-of-the-art
ImageNet classification models by a factor of two compared to an improved form
of Batch Normalization (Ioffe and Szegedy, 2015).

1 INTRODUCTION

Current state-of-the-art deep neural networks (Szegedy et al., 2014; Krizhevsky et al., 2012; He
et al., 2015) often require days of training time with millions of training cases. The typical strategy
to speed-up neural network training is to allocate more parallel resources over many machines and
cluster nodes (Dean et al., 2012). Parallel training also enables researchers to build larger models
where different machines compute different splits of the mini-batches. Although we have improved
our distributed training setups over the years, neural networks are still trained with various simple
first-order stochastic gradient descent (SGD) algorithms. Despite how well SGD scales with the
size of the model and the size of the datasets, it does not scale well with the parallel computation
resources. Larger mini-batches and more parallel computations exhibit diminishing returns for SGD
and related algorithms.

Second-order optimization methods, which use second-order information to construct updates that
account for the curvature of objective function, represent a promising alternative. The canonical
second-order methods work by inverting a large curvature matrix (traditionally the Hessian), but
this doesn’t scale well to deep neural networks with millions of parameters. Various approximations
to the curvature matrix have been proposed to help alleviate this problem, such as diagonal (LeCun
et al., 1998; Duchi et al., 2011; Kingma and Ba, 2014), block diagonal Le Roux et al. (2008),
and low-rank ones (Schraudolph et al., 2007; Bordes et al., 2009; Wang et al., 2014; Keskar and
Berahas, 2015; Moritz et al., 2016; Byrd et al., 2016; Curtis, 2016; Ramamurthy and Duffy). Another

1

Published as a conference paper at ICLR 2017

strategy is to use Krylov-subspace methods and efficient matrix-vector product algorthms to avoid
the inversion problem entirely (Martens, 2010; Vinyals and Povey, 2012; Kiros, 2013; Cho et al.,
2015; He et al., 2016).

The usual problem with curvature approximations, especially low-rank and diagonal ones, is that
they are very crude and only model superficial aspects of the true curvature in the objective function.
Krylov-subspace methods on the other hand suffer because they still rely on 1st-order methods to
compute their updates.

More recently, several approximations have been proposed based on statistical approximations of the
Fisher information matrix (Heskes, 2000; Ollivier, 2013; Grosse and Salakhutdinov, 2015; Povey
et al., 2015; Desjardins et al., 2015). In the K-FAC approach (Martens and Grosse, 2015; Grosse
and Martens, 2016), these approximations result in a block-diagonal approximation to the Fisher
information matrix (with blocks corresponding to entire layers) where each block is approximated
as a Kronecker product of two much smaller matrices, both of which can be estimated and inverted
fairly efficiently. Because the inverse of a Kronecker product of two matrices is the Kronecker
product of their inverses, this allows the entire matrix to be inverted efficiently.

Martens and Grosse (2015) found that K-FAC scales very favorably to larger mini-batches compared
to SGD, enjoying a nearly linear relationship between mini-batch size and per-iteration progress for
medium-to-large sized mini-batches. One possible explanation for this phenomenon is that second-
order methods make more rapid progress exploring the error surface and reaching a neighborhood of
a local minimum where gradient noise (which is inversely proportional to mini-batch size) becomes
the chief limiting factor in convergence1. This observation implies that K-FAC would benefit in
particular from a highly parallel distributed implementation.

In this paper, we propose an asynchronous distributed version of K-FAC that can effectively ex-
ploit large amounts of parallel computing resources, and which scales to industrial-scale neural net
models with hundreds of millions of parameters. Our method augments the traditional distributed
synchronous SGD setup with additional computation nodes that update the approximate Fisher and
compute its inverse. The proposed method achieves a comparable per-iteration runtime as a normal
SGD using the same mini-batch size on a typical 4 GPU cluster. We also propose a “doubly fac-
tored” Kronecker approximation for layers whose inputs are feature maps that are normally too large
to handled by the standard Kronecker-factored approximation. Finally, we empirically demonstrate
that the proposed method speeds up learning of various state-of-the-art ImageNet models by a factor
of two over Batch Normalization (Ioffe and Szegedy, 2015).

2 BACKGROUND

2.1 KRONECKER FACTORED APPROXIMATE FISHER

Let DW be the gradient of the log likelihood L of a neural network w.r.t. some weight matrix
W ∈ RCout×Cin in a layer, where Cin, Cout are the number of input/output units of the layer. The
block of the Fisher information matrix of that layer is given by:

F = E
x,y∼P

[
vec{DW} vec{DW}>

]
, (1)

where P is the distribution over the input x and the network’s distribution over targets y (implied
by the log-likelihood objective). Throughout this paper we assume, unless otherwise stated, that
expectations are taken with respect to P (and not the training distribution over y).

K-FAC (Martens and Grosse, 2015; Grosse and Martens, 2016) uses a Kronecker-factored approx-
imation to each block which we now describe. Denote the input activation vector to the layer as
A ∈ RCin , the pre-activation inputs as s = WA and the back-propagated loss derivatives as
Ds = dL

ds ∈ RCout . Note that the gradient of the weights is the outer product of the input acti-
vation and back-propagated derivatives DW = DsA>. K-FAC approximates the Fisher block as a

1Mathematical evidence for this idea can be found in Martens (2014), where it is shown that (convex
quadratic) objective functions decompose into noise-dependent and independent terms, and that second-order
methods make much more rapid progress optimizing the noise-independent term compared to SGD, while have
no effect on the noise-dependent term (which shrinks with the size of the mini-batch)

2

Published as a conference paper at ICLR 2017

Kronecker product of the second-order statistics of the input and the backpropagated derivatives:

F =E
[
vec{DW} vec{DW}>

]
= E

[
AA> ⊗DsDs>

]
≈ E

[
AA>

]
⊗ E

[
DsDs>

]
, F̂ . (2)

This approximation can be interpreted as making the assumption that the second-order statistics of
the activations and the backpropagated derivatives are uncorrelated.

2.2 APPROXIMATE NATURAL GRADIENT USING K-FAC

The natural gradient (Amari, 1998) is defined as the inverse of the Fisher times the gradient. It is
traditionally interpreted as the direction in parameter space that achieves the largest (instantaneous)
improvement in the objective per unit of change in the output distribution of the network (as mea-
sured using the KL-divergence). Under certain conditions, which almost always hold in practice,
it can also be interpreted as a second-order update computed by minimizing a local quadratic ap-
proximation of the log-likelihood objective, where the Hessian is approximated using the Fisher
(Martens, 2014).

To compute the approximate natural gradient in K-FAC, one multiplies the gradient for the weights
of each layer by the inverse of the corresponding approximate Fisher block F̂ for that layer. Denote
the gradient of the loss function with respect to the weights W by GW ∈ RCin×Cout . We will
assume the use of the factorized Tikhonov damping approach described by Martens and Grosse
(2015), where the addition of the damping term λI to F̂ is approximated by adding πAλ

1
2 I to

E
[
AA>

]
and πDsλ

1
2 I to E

[
DsDs>

]
, where πA and πDs are adjustment factors that are described

in detail and generalized in Sec. 4.1. (Note that one can also include the contribution to the curvature
from any L2 regularization terms with λ.)

By exploiting the basic identities (A⊗B)−1 = (A−1⊗B−1) and (A⊗B) vec(C) = vec(BCA>),
the approximate natural gradient update v can then be computed as:

v =
(
F̂ + λI

)−1
vec{GW } ≈ vec

{(
E
[
AA>

]
+ πAλ

1
2 I
)−1
GW

(
E
[
DsDs>

]
+ πDsλ

1
2 I
)−1}

,

(3)

which amounts to several matrix inversion of multiplication operations involving matrices roughly
the same size as the weight matrix W .

3 DISTRIBUTED OPTIMIZATION USING K-FAC

Stochastic optimization algorithms benefit from low-variance gradient estimates (as might be ob-
tained from larger mini-batches). Prior work suggests that approximate natural gradient algorithms
might benefit more than standard SGD from reducing the variance (Martens and Grosse, 2015;
Grosse and Martens, 2016). One way to efficiently obtain low-variance gradient estimates is to par-
allelize the gradient computation across many machines in a distributed system (thus allowing large
mini-batches to be processed efficiently). Because the gradient computation in K-FAC is identical to
that of SGD, we parallelize the gradient computation using the standard synchronous SGD model.

However, K-FAC also introduces other forms of overhead not found in SGD — in particular, estima-
tion of second-order statistics and computation of inverses or eigenvalues of the Kronecker factors.
In this section, we describe how these additional computations can be performed asynchronously.
While this asynchronous computation introduces an additional source of error into the algorithm,
we find that it does not significantly affect the per-iteration progress in practice. All in all, the per-
iteration wall clock time of our distributed K-FAC implementation is only 5-10% higher compared
to synchronous SGD with the same mini-batch size.

3.1 ASYNCHRONOUS FISHER BLOCK INVERSION

Computing the parameter updates as per Eq.3 requires the estimated gradients to be multiplied by
the inverse of the smaller Kronecker factors. This requires periodically computing (typically) either
inverses or eigendecompositions of each of these factors. While these factors typically have sizes

3

Published as a conference paper at ICLR 2017

...

parameters

gradient
 worker

 stats
worker

parameter
 server

compute
inverses

gradient
 worker

gradient
 worker

Figure 1: The diagram illustrates the distributed computation of K-FAC. Gradient workers (blue)
compute the gradient w.r.t. the loss function. Stats workers (grey) compute the sampled second-
order statistics. Additional workers (red) compute inverse Fisher blocks. The parameter server
(orange) uses gradients and their inverse Fisher blocks to compute parameter updates.

only in the hundreds or low thousands, very deep networks may have hundreds of such matrices
(2 or more for each layer). Furthermore, matrix inversion and eigendecomposition see little benefit
from GPU computation, so they can be more expensive than standard neural network operations.
For these reasons, inverting the approximate Fisher blocks represents a significant computational
cost.

It has been observed that refreshing the inverse of the Fisher blocks only occasionally and using
stale values otherwise has only a small detrimental effect on average per-iteration progress, perhaps
because the curvature changes relatively slowly (Martens and Grosse, 2015). We push this a step
further by computing the inverses asynchronously while the network is still training. Because the re-
quired linear algebra operations are CPU-bound while the rest of our computations are GPU-bound,
we perform them on the CPU with little effective overhead. Our curvature statistics are somewhat
more stale as a result, but this does not appear to significantly affect per-iteration optimization per-
formance. In our experiments, we found that computing the inverses asynchronously usually offered
a 40-50% speed-up to the overall wall-clock time of the K-FAC algorithm.

3.2 ASYNCHRONOUS STATISTICS COMPUTATION

The other major source of computational overhead in K-FAC is the estimation of the second-order
statistics of the activations and derivatives, which are needed for the Kronecker factors. In the stan-
dard K-FAC algorithm, these statistics are computed on the same mini-batches as the gradients,
allowing the forward pass computations to be shared between the gradient and statistics computa-
tions. By computing the gradients and statistics on separate mini-batches, we can enable a higher
degree of parallelism, at the expense of slightly more total computational operations. Under this
scheme, the statistics estimation is independent of the gradient computation, so it can be done on
one or more separate worker nodes with their own independent data shards. These worker nodes
receive parameters from the parameter server (just as in synchronous SGD) and communicate statis-
tics back to the parameter server. In our experiments, we assigned at most one worker to computing
statistics.

In cases where it is undesirable to devote separate worker nodes to computing statistics, we also
introduce a fast approximation to the statistics for convolution layers (see Appendix A).

4

Published as a conference paper at ICLR 2017

4 DOUBLY-FACTORED KRONECKER APPROXIMATION FOR LARGE
CONVOLUTION LAYERS

Computing the standard Kronecker factored Fisher approximation for a given layer involves opera-
tions on matrices whose dimension is the number of input units or output units. The cost of these
operations is reasonable for most fully-connected networks because the number of units in each layer
rarely exceeds a couple thousand. Large convolutional neural networks, however, often include a
fully-connected layer that “pools” over a large feature map before the final softmax classification.
For instance, the output of the last pooling layer of AlexNet is of size 6 × 6 × 256 = 9216, which
then provides inputs to the subsequent fully connected layer of 4096 ReLUs. VGG models also
share a similar architecture. For the standard Kronecker-factored approximation one of the factors
will be a matrix of size 9216 × 9216, which is too expensive to be explicitly inverted as often as is
needed during training.

In this section we propose a “doubly-factored” Kronecker approximation for layers whose input is
a large feature map. Specifically, we approximate the second-order statistics matrix of the inputs as
itself factoring as a Kronecker product. This gives an approximation which is a Kronecker product
of three matrices.

Using the AlexNet example, the 9216 × 4096 weight matrix in the first fully connected layer is
equivalent to a filterbank of 4096 filters with kernel size 6 × 6 on 256 input channels. Let A be a
matrix of dimension T -by-Cin representing the input activations (for a single training case), where
T = Kw ×Kh is the feature map height and width, and Cin is the number of input channels. The
Fisher block for such a layer can be written as:

E[vec{DW} vec{DW}>] = E[vec{A} vec{A}> ⊗DsDs>], A ∈ RT ×Cin . (4)

We begin be making the following rank-1 approximation:

A ≈ KΨ>, (5)

whereK ∈ RT , Ψ ∈ RCin are the factors along the spatial location dimension and the input channel
dimension. The optimal solution of a low-rank approximation under the Frobenius norm is given
by the singular value decomposition. The activation matrix A is small enough that its SVD can be
computed efficiently. Let σ1, u1, v1 be the first singular value and its left and right singular vectors
of the activation matrix A, respectively. The factors of the rank-1 approximation are then chosen to
be K =

√
σ1u1 and Ψ =

√
σ1v1. K captures the activation patterns across spatial locations in a

feature map and Ψ captures the pattern across the filter responses. Under the rank-1 approximation
of A we have:

E[vec{A} vec{A}> ⊗DsDs>] ≈ E[vec{KΨ>} vec{KΨ>}> ⊗DsDs>] (6)

= E[KK> ⊗ΨΨ> ⊗DsDs>]. (7)

We further assume the second order statistics are three-way independent between the loss derivatives
Ds, the activations along the input channels Ψ, and the activations along spatial locations K:

E[vec{DW} vec{DW}>] ≈ E[KK>]⊗ E[ΨΨ>]⊗ E[DsDs>]. (8)

The final approximated Fisher block is a Kronecker product of three small matrices. And note that
although we assumed the feature map activations have low-rank structure, the resulting approxi-
mated Fisher is not low-rank.

The approximate natural gradient for this layer can then be computed by multiplying the inverses
of each of the smaller matrices against the respective dimensions of the gradient tensor. We define
a function Ri : Rd1×d2×d3 → Rdjdk×di that constructs a matrix from a 3D tensor by “reshap-
ing” it so that the desired target dimension i ∈ {1, 2, 3} maps to columns, while the remaining
dimensions (j and k) are “folded together” and map to the rows. Given the gradient of the weights,
GW ∈ RT ×Cin×Cout we can compute the matrix-vector product with the inverse double-factored
Kronecker approximated Fisher block as:

R−13

(
E[DsDs>]−1R3

(
R−12

(
E[ΨΨ>]−1R2(R−11 (E[KK>]−1R1(GW)))

)))
. (9)

5

Published as a conference paper at ICLR 2017

which is a nested application of the reshape function R(·) at each of the dimension of the gradient
tensor.

The doubly factored Kronecker approximation provides a computationally feasible alternative to the
standard Kronecker-factored approximation for layers that have a number of parameters in the order
of hundreds of millions. For example, inverting it for the first fully connected layer of AlexNet takes
about 15 seconds on an 8 core Intel Xeon CPU, and such time is amortized in our asynchronous
algorithm.

Unfortunately, the homogeneous coordinate formulation is no longer applicable under this new ap-
proximation. Instead, we lump the bias parameters together and associate a full Fisher block with
them, which can be explicitly computed and inverted since the number of bias parameters per layer
is small.

4.1 FACTORED TIKHONOV DAMPING FOR THE DOUBLE-FACTORED KRONECKER
APPROXIMATION

In second-order optimization methods, “damping” performs the crucial task of correcting for the
inaccuracies of the local quadratic approximation of the objective that is (perhaps implicitly) op-
timized when computing the update (Martens and Sutskever, 2012; Martens, 2014, e.g.). In the
well-known Tikhonov damping/regularization approach, one adds a multiple of the identity λI to
the Fisher before inverting it (as one also does for L2-regularization / weight-decay), which roughly
corresponds to imposing a spherical trust-region on the update.

The inverse of a Kronecker product can be computed efficiently as the Kronecker product of the
inverse of its factors. Adding a multiple of the identity complicates this computation (although it
can still be performed tractably using eigendecompositions). The “factored Tikhonov damping”
technique proposed in (Martens and Grosse, 2015) is appealing because it preserves the Kronecker
structure of the factorization and thus the inverse can still be computed by inverting each of the
smaller matrices (and avoiding the more expensive eigendecomposition operation). And in our
experiments with large ImageNet models, we also observe the factored damping seems to perform
better in practice. In this subsection we derive a generalized version of factored Tikhonov damping
for the double-factored Kronecker approximation.

Suppose we wish to add λI to our approximate Fisher block A⊗B ⊗ C. In the factored Tikhonov
scheme this is approximated by adding πaλ

1
3 I , πbλ

1
3 I , and πcλ

1
3 I to A, B and C respectively, for

non-negative scalars πa, πb and πc satisfying πaπbπc = 1. The error associated with this approxi-
mation is:

(A+ πaλ
1
3 I)⊗ (B + πbλ

1
3 I)⊗ (C + πcλ

1
3 I)− (A⊗B ⊗ C + λI) (10)

=πcλ
1
3 I ⊗A⊗B + πbλ

1
3 I ⊗A⊗ C + πaλ

1
3 I ⊗B ⊗ C

+ πcλ
i
3 I ⊗ πbλ

1
3 I ⊗A+ πcλ

1
3 I ⊗ πaλ

1
3 I ⊗B + πaλ

1
3 I ⊗ πbλ

1
3 I ⊗ C (11)

Following Martens and Grosse (2015), we choose πa, πb and πc by taking the nuclear norm in
Eq. 11 and minimizing its triangle inequality-derived upper-bound. Note that the nuclear norm of
Kronecker products is the product of the nuclear norms of each individual matrices: ‖A ⊗ B‖∗ =
‖A‖∗‖B‖∗. This gives the following formula for the value of πa

πa =
3

√(
‖A‖∗
dA

)2(‖B‖∗
dB

‖C‖∗
dC

)−1
. (12)

where the d’s are the number of rows (equiv. columns) of the corresponding Kronecker factor ma-
trices. The corresponding formulae for πb and πc are analogous. Intuitively, the Eq. 12 rescales
the contribution to each factor matrix according to the geometric mean of the ratio of its norm vs
the norms of the other factor matrices. This results in the contribution being upscaled if the factor’s
norm is larger than averaged norm, for example. Note that this formula generalizes to Kronecker
products of arbitrary numbers of matrices as the geometric mean of the norm ratios.

6

Published as a conference paper at ICLR 2017

5 STEP SIZE SELECTION

Although Grosse and Martens (2016) found that Polyak averaging (Polyak and Juditsky, 1992) ob-
viated the need for tuning learning rate schedules on some problems, we observed the choice of
learning rate schedules to be an important factor in our ImageNet experiments (perhaps due to higher
stochasticity in the updates). On ImageNet, it is common to use a fixed exponential decay schedule
(Szegedy et al., 2014; 2015). As an alternative to learning rate schedules, we instead use curvature
information to control the amount by which the predictive distribution is allowed to change after
each update. In particular, given a parameter update vector v, the second-order Taylor approxima-
tion to the KL divergence between the predictive distributions before and after the update is given
by the (squared) Fisher norm:

DKL[q||p] ≈ 1

2
v>Fv (13)

This quantity can be computed with a curvature-vector product (Schraudolph, 2002). Observe that
choosing a step size of η will produce an update with squared Fisher norm η2 v>Fv. Instead of
using a learning rate schedule, we choose η in each iteration such that the squared Fisher norm is at
most some value c:

η = min

(
ηmax,

√
c

v>Fv

)
(14)

Grosse and Martens (2016) used this method to clip updates at the start of training, but we found
it useful to use it throughout training. We use an exponential decay schedule ck = c0ζ

k, where
c0 and ζ are tunable parameters, and k is incremented periodically (every half an epoch in our
ImageNet experiments). Shrinking the maximum changes in the model prediction after each update
is analogous to shrinking the trust region of the second-order optimization. In practice, computing
curvature-vector products after every update introduces significant computational overhead, so we
instead used the approximate Fisher F̂ in place of F , which allows the approximate Fisher norm to
be computed efficiently as v>F̂v = v>F̂ (F̂−1GW) = v>GW . The maximum step size ηmax was
set to a large value, and in practice this maximum was reached only at the beginning of training,
when F was small in magnitude. We found this outperformed simple exponential learning rate
decay on ImageNet experiments (see Appendix B).

6 EXPERIMENTS

We experimentally evaluated distributed K-FAC on several large convolutional neural network train-
ing tasks involving the CIFAR-10 and ImageNet classification datasets.

Due to computational resource constraints, we used a single GPU server with 8 Nvidia K80 GPUs
to simulate a large distributed system. The GPUs were used as gradient workers that computed the
gradient over a large mini-batch, with the CPUs acting as a parameter server. The Fisher block
inversions were performed on the CPUs in parallel, using as many threads as possible. The second-
order statistics required for the various Fisher block approximations were computed either syn-
cronously by the gradient workers after each gradient computation (CIFAR-10 experiments), or
asynchronously using a separate dedicated “stats worker” (ImageNet experiments).

Meta-parameters such as learning rates, damping parameters, and the decay-rate for the second-
order statistics, were optimized carefully by hand for each method. The momentum was fixed to
0.9.

Similarly to Martens and Grosse (2015), we applied an exponentially decayed Polyak averaging
scheme to the sequence of output iterates produced by each method. We found this improved their
convergence rate in the later stages of optimization, and reduced or eliminated the need to decay the
learning rates.

We chose to base our implementation of distributed K-FAC on the TensorFlow framework (Abadi
et al., 2016) because it provides well-engineered and scalable primitives for distributed computation.
We implement distributed K-FAC in TensorFlow by scanning the gradient-computing graph for
groups of parameters whose gradient computations have particular structures. Having identified such
groups we compute/approximate their Fisher blocks using a method tailored to the type of structure

7

Published as a conference paper at ICLR 2017

0 500 1000 1500 2000 2500 3000
Updates

0.4
0.6
0.8
1.0
1.2
1.4
1.6

NL
L

dist.K-FAC async gpu1
dist.K-FAC async gpu4
dist.K-FAC sync gpu1
dist.K-FAC sync gpu4

0 100 200 300 400 500 600
sec.

0.4
0.6
0.8
1.0
1.2
1.4
1.6

NL
L

0 500 1000 1500 2000 2500 3000
Updates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
r.

0 100 200 300 400 500 600
sec.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
r.

Figure 2: The results from our CIFAR-10 experiment looking at the effectiveness of asynchronously
computing the approximate Fisher inverses. gpu indicates the number of gradient workers. Dashed
lines denote training curves and solid lines denote test curves. Top row: cross entropy loss and
classification error vs the number of updates. Bottom row: cross entropy loss and classification
error vs wallclock time.

observed. See Appendix C for details. This type of implementation can be applied to existing model-
specification code without significant modification of said code. And because TensorFlow’s parallel
primitives were designed with scalability in mind, it should be possible to scale our implementation
to a larger distributed system with hundreds of workers.

6.1 CIFAR-10 CLASSIFICATION AND ASYNCHRONOUS FISHER BLOCK INVERSION

In our first experiment we evaluated the effectiveness of asynchronously computing the approximate
Fisher inverses (as described in Section 3.1). We considered the effect that this has both on the
quality of the updates, as measured by per-iteration progress on the objective, and on the average
per-iteration wall-clock time.

The task is to train a basic convolutional network model on the CIFAR-10 image classification
dataset (Krizhevsky and Hinton, 2009). The model has 3 convolutional layers of 32-32-64 filters,
each with a receptive field size of 5x5, followed by a softmax layer that predicts 10 classes. This is
a similar but not identical CIFAR-10 model that was used by Grosse and Martens (2016). All the
CIFAR-10 experiments use a mini-batch size of 512.

The baseline method is a simple synchronous version of distributed K-FAC with a fixed learning
rate, and up to 4 GPUs acting as gradient and stats workers, which recomputes the inverses of the
approximate Fisher blocks once every 20 iterations. This baseline method behaves similarly to the
implementation of K-FAC in Grosse and Martens (2016), while being potentially faster due to its
greater use of parallelism. We compare this baseline to a version of distributed K-FAC where the
approximate Fisher blocks are inverted asynchronously and in parallel with the rest of the optimiza-
tion process. Note that under this scheme, inverses are updated about once every 16 iterations for
the single GPU condition, and every 30 iterations for the four GPU condition. For networks larger
than this relatively small CIFAR-10 net they may get updated (far) less often (e.g. the AlexNet
experiments in Section 6.2.2).

The results of this first experiment are plotted in Fig. 2. We found that the asynchronous version
iterated about 1.5 times faster than the synchronous version, while its per-iteration progress remained
comparable. The plots show that the asynchronous version is better at taking advantage of parallel
computation and displayed an almost linear speed-up as the number of gradient workers increases
to 4. In terms of the wall-clock time, using only 4 GPUs the asynchronous version of distributed
K-FAC is able to complete 700 iterations in under a minute, where it achieves the minimum test
error (19%).

6.2 IMAGENET CLASSIFICATION

In our second set of experiments we benchmarked distributed K-FAC against several other popular
approaches, and considered the effect of mini-batch size on per-iteration progress. To do this we
trained various off-the-shelf convnet architectures for image classification on the ImageNet dataset

8

Published as a conference paper at ICLR 2017

0 2 4 6 8 10 12 14 16
Updates x 1e+04

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Cr
os

sE
nt

ro
py

SGD+BN bz256 rbz128
SGD+BN bz256 rbz32
dist.K-FAC bz256
dist.K-FAC+BN bz256

0 13.9 27.8 41.7 55.6 69.4 83.3 97.2
hours

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Cr
os

sE
nt

ro
py

0 2 4 6 8 10 12 14 16
Updates x 1e+04

0.25

0.30

0.35

0.40

0.45

0.50

Er
r.

0 13.9 27.8 41.7 55.6 69.4 83.3 97.2
hours

0.25

0.30

0.35

0.40

0.45

0.50

Er
r.

Figure 3: Optimization performance of distributed K-FAC and SGD training GoogLeNet on Ima-
geNet. Dashed lines denote training curves and solid lines denote validation curves. bz indicates the
size of mini-batches. rbz indicates the size of chunks used to assemble the BN updates. Top row:
cross entropy loss and classification error v.s. the number of updates. Bottom row: cross entropy
loss and classification error vs wallclock time (in hours). All methods used 4 GPUs, with distributed
K-FAC using the 4-th GPU as a dedicated asynchronous stats worker.

(Russakovsky et al., 2015): AlexNet (Krizhevsky et al., 2012), GoogLeNet InceptionV1 (Szegedy
et al., 2014) and the 50-layer Residual network (He et al., 2015).

Despite having 1.2 million images in the ImageNet training set, a data pre-processing pipeline is
almost always used for training ImageNet that includes image jittering and aspect distortion. We
used a less extensive dataset augmentation/pre-processing pipeline than is typically used for Ima-
geNet, as the purpose of this paper is not to achieve state-of-the-art ImageNet results, but rather
to evaluate the optimization performance of distributed K-FAC. In particular, the dataset consists
of 224x224 images and during training the original images are first resized to 256x256 and then
randomly cropped back down to 224x224 before being fed to the network. Note that while it is
typically the case that validation error is higher than training error, this data pre-processing pipeline
for ImageNet creates an augmented training set that is more difficult than the undistorted validation
set and therefore the validation error is often lower than the training error during the first 90% of
training. This observation is consistent with previously published results (He et al., 2015).

In all our ImageNet experiments, we used the cheaper Kronecker factorization from Appendix A,
and the KL-based step sized selection method described in Section 5 with parameters c0 = 0.01
and ζ = 0.96. The SGD baselines use an exponential learning rate decay schedule with a decay
rate of 0.96. Decaying is applied after each half-epoch for distributed K-FAC and SGD+Batch
Normalization, and after every two epochs for plain SGD, which is consistent with the experimental
setup of Ioffe and Szegedy (2015).

6.2.1 GOOGLELENET AND BATCH NORMALIZATION

Batch Normalization (Ioffe and Szegedy, 2015) is a reparameterization of neural networks that can
make them easier to train with first-order methods, and has been successfully applied to large Ima-
geNet models. It can be thought of as a modification of the units of a neural network so that each
one centers and normalizes its own raw input over the current mini-batch (or subset thereof), after
which it applies a separate shift and scaling operation via its own local “bias” and “gain” parameters
(which are optimized). These shift and scaling operations can learn to effectively undo the center-
ing and normalization, thus preserving the class of functions that the network can compute. Batch
Normalization (BN) is closely related to centering techniques (Schraudolph, 1998), and likely helps
for the same reason that they do, which is that the alternative parameterization gives rise to loss
surfaces with more favorable curvature properties. The main difference between BN and traditional
centering is that BN makes the centering and normalization operations part of the model instead
of the optimization algorithm (and thus “backprops” through them when computing the gradient),
which helps stabilize the optimization.

Without any changes to the algorithm, distributed K-FAC can be used to train neural networks that
have BN layers. The weight-matrix gradient for such layers has the same structure as it does for
standard layers, and so Fisher blocks can be approximated using the same set of techniques. The

9

Published as a conference paper at ICLR 2017

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Updates x 1e+04

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Cr
os

sE
nt

ro
py

SGD bz2048
SGD+BN bz2048 rbz256
dist.K-FAC bz2048

0 5.6 11.1 16.7 22.2 27.8 33.3
hours

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Cr
os

sE
nt

ro
py

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Updates x 1e+04

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Er
r.

0 5.6 11.1 16.7 22.2 27.8 33.3
hours

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Er
r.

Figure 4: Optimization performance of distributed K-FAC and SGD training AlexNet on ImageNet.
Dashed lines denote training curves and solid lines denote validation curves. bz indicates the size
of the mini-batches. rbz indicates the size of chunks used to assemble the BN updates. Top row:
cross entropy loss and validation error vs the number of updates. Bottom row: cross entropy loss
and validation error vs wallclock time (in hours). All methods used 8 GPUs, with distributed K-FAC
using the 8-th GPU as a dedicated asynchronous stats worker.

per-unit gain and bias parameters cause a minor complication, but because they are relatively few in
number, one can compute an exact Fisher block for each of them.

Computing updates for BN networks over large mini-batches is usually done by splitting the mini-
batch into chunks of size 32, computing the gradients separately for these chunks (using only the
data in the chunk to compute the mean and variance statistics), and then summing them together.
Using small sample sets to compute the statistics like this introduces additional stochasticity into the
BN update that acts as a regularizer, but can also hurt optimization performance. To help decouple
the effect of regularization and optimization, we also compared to a BN baseline that uses larger
chunks. We found using larger chunks can give a factor of 2 speed-up in optimization performance
over the standard BN baseline. In our figures rbz will indicate the chunk size, which defaults 32 if
left unspecified.

In Fig. 3, we compare distributed K-FAC to SGD on GoogLeNet with and without BN. All methods
used 4 GPUs, with distributed K-FAC using the 4-th GPU as a dedicated asynchronous stats worker.

We observe that the per-iteration progress made by distributed K-FAC on the training objective is not
significantly affected by the use of BN. Moreover, distributed K-FAC is 3.5 times faster than SGD
with standard BN baseline (orange line) and 1.5-2 times faster than the enhanced BN baseline (blue
line). BN, however, does help distributed K-FAC generalize better, likely due to its aforementioned
regularizing effect.

For the simplicity of our discussion, distributed K-FAC is not combined with BN in the the rest of the
experiments, as we are chiefly interested in evaluating optimization performance, not regularization,
and BN doesn’t seem to provide any additional benefit to distributed K-FAC in regards to the former.
Note that this is not too surprising, given that K-FAC is provably invariant to the kind of centering
and normalization transformations that BN does (Martens and Grosse, 2015).

6.2.2 ALEXNET AND THE DOUBLY-FACTORED KRONECKER APPROXIMATION

To demonstrate that distributed K-FAC can efficiently optimize models with very wide layers we
train AlexNet using distributed K-FAC and compare to SGD+BN. The doubly-factored Kronecker
approximation proposed in Section 4 is applied to the first fully-connected layer of AlexNet, which
has 9216 input units and is thus too wide for the standard Kronecker approximation to be feasible.
Note that even with this addtional approximation, computing all of the Fisher block inverses for
AlexNet is very expensive, and in our experiments they only get updated once every few hundred
iterations by our 16 core Xeon 2.2Ghz CPU.

The results from this experiment are plotted in Fig. 4. They show that Distributed K-FAC still works
well despite potentially extreme staleness of the Fisher block inverses, speeding up training by a
factor of 1.5 over the improved SGD-BN baseline.

10

Published as a conference paper at ICLR 2017

0 2 4 6 8 10 12
Updates x 1e+04

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Cr
os

sE
nt

ro
py

SGD+BN bz512 rbz64
dist.K-FAC bz512

0 13.9 27.8 41.7 55.6 69.4 83.3 97.2
hours

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Cr
os

sE
nt

ro
py

0 2 4 6 8 10 12
Updates x 1e+04

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
r.

0 13.9 27.8 41.7 55.6 69.4 83.3 97.2
hours

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
r.

Figure 5: Optimization performance of distributed K-FAC and SGD training ResNet50 on Ima-
geNet. The dashed lines are the training curves and solid lines are the validation curves. bz indicates
the size of mini-batches. rbz indicates the size of chunks used to assemble the BN updates. Top
row: cross entropy loss and classification error v.s. the number of updates. Bottom row: cross en-
tropy loss and classification error v.s. wallclock time (in hours). All methods used 8 GPUs, with
distributed K-FAC using the 8-th GPU as a dedicated asynchronous stats worker.

0 10 20 30 40 50
#example consumed x 1e+06

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Cr
os

sE
nt

ro
py

SGD+BN bz1024
SGD+BN bz2048
SGD+BN bz256
dist.K-FAC bz1024
dist.K-FAC bz2048
dist.K-FAC bz256

0 10 20 30 40 50
#example consumed x 1e+06

0.25

0.30

0.35

0.40

0.45

0.50

Tr
ai

ni
ng

 E
rr

.

Figure 6: The comparison of distributed K-FAC and SGD on per training case progress on training
loss and errors. The experiments were conducted using GoogLeNet with various mini-batch sizes.

6.2.3 VERY DEEP ARCHITECTURES (RESNETS)

In recent years very deep convolutional architectures have been successfully applied to ImageNet
classification. These networks are particularly challenging to train because the usual difficulties as-
sociated with deep learning are especially severe. Fortunately second-order optimization is perhaps
ideally suited to addressing these difficulties in a robust and principled way (Martens, 2010).

To investigate whether distributed K-FAC can scale to such architectures and provide useful ac-
celeration, we compared it to SGD+BN using the 50 layer ResNet architecture (He et al., 2015).
The results from this experiment are plotted in Fig. 5. They show that distributed K-FAC provides
significant speed-up during the early stages of training compared to SGD+BN.

6.2.4 MINI-BATCH SIZE SCALING PROPERTIES

In our final experiment we explored how well distributed K-FAC scales as additional parallel com-
puting resources become available. To do this we trained GoogLeNet with varying mini-batch sizes
of {256, 1024, 2048}, and measured per-training-case progress. Ideally, if extra gradient data is be-
ing used efficiently, one should expect the per-training-case progress to remain relatively constant
with respect to mini-batch size. The results from this experiment are plotted in Fig. 6, and show
that distributed K-FAC exhibits something close to this ideal behavior, while SGD+BN rapidly loses
data efficiency when moving beyond a mini-batch size of 256. These results suggest that distributed
K-FAC, more so than the SGD+BN baseline, is capable of speeding up training in proportion to the
amount of parallel computational resources used.

11

Published as a conference paper at ICLR 2017

7 DISCUSSION

We have introduced distributed K-FAC, an asynchronous distributed second-order optimization al-
gorithm which computes Kronecker-factored Fisher approximations and stochastic gradients over
larger mini-batches asynchronously and in parallel.

Our experiments show that the extra overhead introduced by distributed K-FAC is mostly mitigated
by the use of parallel asynchronous computation, resulting in updates that can be computed in a
similar amount of time to those of distributed SGD, while making much more progress on the ob-
jective function per iteration. We showed that in practice this can lead to speedups of roughly 3.5x
compared to standard SGD + Batch Normalization (BN), and 2x compared to SGD + an improved
version of BN on large-scale convolutional network training tasks.

We also proposed a doubly-factored Kronecker approximation that allows distributed K-FAC to scale
up to large models with hundreds of millions of parameters, and demonstrated the effectiveness of
this approach in experiments.

Finally, we showed that distributed K-FAC enjoys a favorable scaling property with mini-batch
size that is seemingly not shared by SGD+BN. In particular, we showed that per-iteration progress
tends to be proportional to the mini-batch size up to a much larger threshold than for SGD+BN. This
suggests that it will yield even further reductions in total wall-clock training time when implemented
in a larger distributed system than the one we considered.

REFERENCES

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A cpu and gpu math compiler in python.
In Proc. 9th Python in Science Conf, pages 1–7, 2010.

Antoine Bordes, Léon Bottou, and Patrick Gallinari. Sgd-qn: Careful quasi-newton stochastic gradient descent.
Journal of Machine Learning Research, 10(Jul):1737–1754, 2009.

Richard H Byrd, SL Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton method for large-
scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

Minhyung Cho, Chandra Dhir, and Jaehyung Lee. Hessian-free optimization for learning deep multidimen-
sional recurrent neural networks. In Advances in Neural Information Processing Systems, pages 883–891,
2015.

Frank Curtis. A self-correcting variable-metric algorithm for stochastic optimization. In Proceedings of The
33rd International Conference on Machine Learning, pages 632–641, 2016.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker,
Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in neural information
processing systems, pages 1223–1231, 2012.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and Koray Kavukcuoglu. Natural neural networks.
In Advances in Neural Information Processing Systems, pages 2071–2079, 2015.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution layers. In
Proceedings of the 33rd International Conference on Machine Learning (ICML-16), 2016.

Roger Grosse and Ruslan Salakhutdinov. Scaling up natural gradient by factorizing fisher information. In
Proceedings of the 32nd International Conference on Machine Learning (ICML), 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

12

Published as a conference paper at ICLR 2017

Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, and Martin Takáč. Large scale distributed hessian-free
optimization for deep neural network. arXiv preprint arXiv:1606.00511, 2016.

Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Computation, 12(4):
881–901, 2000.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of The 32nd International Conference on Machine Learning, pages
448–456, 2015.

Nitish Shirish Keskar and Albert S Berahas. adaqn: An adaptive quasi-newton algorithm for training rnns.
arXiv preprint arXiv:1511.01169, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ryan Kiros. Training neural networks with stochastic hessian-free optimization. arXiv preprint
arXiv:1301.3641, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. , University of
Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gradient algo-
rithm. In Advances in neural information processing systems, pages 849–856, 2008.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

James Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML), pages 735–742, 2010.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193,
2014.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 2408–2417,
2015.

James Martens and Ilya Sutskever. Training deep and recurrent networks with Hessian-free optimization. In
Neural Networks: Tricks of the Trade, pages 479–535. Springer, 2012.

Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic L-BFGS algorithm. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pages 249–258,
2016.

Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks. arXiv preprint
arXiv:1303.0818, 2013.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30(4):838–855, 1992.

Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of DNNs with natural gradient and
parameter averaging. In International Conference on Learning Representations: Workshop track, 2015.

Vivek Ramamurthy and Nigel Duffy. L-SR1: A novel second order optimization method for deep learning.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015.

Nicol N. Schraudolph. Centering neural network gradient factors. In Genevieve B. Orr and Klaus-Robert
Müller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science,
pages 207–226. Springer Verlag, Berlin, 1998.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural Com-
putation, 14(7), 2002.

13

Published as a conference paper at ICLR 2017

Nicol N Schraudolph, Jin Yu, Simon Günter, et al. A stochastic quasi-newton method for online convex opti-
mization. In AISTATS, volume 7, pages 436–443, 2007.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.

Oriol Vinyals and Daniel Povey. Krylov subspace descent for deep learning. In AISTATS, pages 1261–1268,
2012.

Xiao Wang, Shiqian Ma, and Wei Liu. Stochastic quasi-newton methods for nonconvex stochastic optimization.
arXiv preprint arXiv:1412.1196, 2014.

14

Published as a conference paper at ICLR 2017

0 1 2 3 4 5 6
Updates x 1e+04

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Cr
os

sE
nt

ro
py

dist.K-FAC KFC bz512
dist.K-FAC fast bz512

0 13.9 27.8 41.7 55.6 69.4 83.3 97.2
hours

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Cr
os

sE
nt

ro
py

0 1 2 3 4 5 6
Updates x 1e+04

0.25

0.30

0.35

0.40

0.45

0.50

Er
r.

0 13.9 27.8 41.7 55.6 69.4 83.3 97.2
hours

0.25

0.30

0.35

0.40

0.45

0.50

Er
r.

Figure 7: Empirical evaluation of the proposed cheaper Kronecker approximation on GoogLeNet.
bz indicates the size of the mini-batches. Dashed lines denote training curves and solid lines denote
validation curves. Top row: cross entropy loss and classification error vs the number of updates.
Bottom row: cross entropy loss and classification error vs wallclock time.

A A CHEAPER KRONECKER FACTOR APPROXIMATION FOR CONVOLUTION
LAYERS

In a convolution layer, the gradient is the sum of the outer product between the receptive field input
activation At and the back-propagated derivatives Dst at each spatial location t ∈ T . One cannot
simply apply the standard Kronecker factored approximation from Martens and Grosse (2015) to
each location, sum the results, and then take the inverse, as there is no known efficient algorithm for
computing the inverse of such a sum.

In Grosse and Martens (2016), a Kronecker-factored approximation for convolutional layers called
Kronecker Factors for Convolution (KFC) was developed. It works by introducing additional sta-
tistical assumptions about how the weight gradients are related across locations. In particular, KFC
assumes spatial homogeneity, i.e. that all locations have the same statistics, and spatially uncor-
related derivatives, which (essentially) means that gradients from any two different locations are
statistically independent. This yields the following approximation:

E[vec{DW} vec{DW}>] ≈ |T |E
[
AtA>t

]
⊗ E

[
DstDs>t

]
. (15)

In this section we introduce an arguably simpler Kronecker factored approximation for convolutional
layers that is cheaper to compute. In practice, it appears to be competitive with the original KFC ap-
proximation in terms of per-iteration progress on the objective, working worse in some experiments
and better in others, while (often) improving wall-clock time due to its cheaper cost.

It works by approximating the sum of the gradients over spatial locations as the outer product of
the averaged receptive field activations over locations Et[At], and the averaged back-propagated
derivatives Et[Dst], multipled by the number of spatial locations |T |. In other words:

E[vec{DW} vec{DW}>] = E

[
vec{

∑
t∈T
DstA>t } vec{

∑
t∈T
DstA>t }>

]
(16)

=E

(∑
t∈T
At ⊗Dst

)(∑
t∈T
At ⊗Dst

)> (17)

≈E

[(
|T |E

t
[At]⊗ E

t
[Dst]

)(
|T |E

t
[At]⊗ E

t
[Dst]

)>]
(18)

Under the approximation assumption that the second-order statistics of the average activations,
Et[At], and the second-order statistics of the average derivatives, Et[Dst], are uncorrelated, this
becomes:

|T |2 E
[
E
t
[At]E

t
[At]

>
]
⊗ E

[
E
t
[Dst]E

t
[Dst]>

]
(19)

15

Published as a conference paper at ICLR 2017

0 0.5 1 1.5 2 2.5 3
Updates x 1e+04

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cr
os

sE
nt

ro
py

dist.K-FAC bz256 decayKL
dist.K-FAC bz256 decayLR

0 0.5 1 1.5 2 2.5 3
Updates x 1e+04

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Er
r.

Figure 8: Results from the experiment described in Appendix B. decayKL indicates the proposed
step-size selection method and decayLR indicates standard exponential learning rate decay.

This approximation is cheaper than the original KFC approximation because it is easier to compute
a single outer product (after averaging over locations) than it is to compute an outer product at
each location and then average. In the synchronous setting, for the large convolutional networks we
experimented with, this trick resulted in a 20-30% decrease in overall wall clock time per iteration,
with little effect on per-iteration progress.

B EXPERIMENTAL EVALUATION OF THE STEP-SIZE SELECTION METHOD OF
SECTION 5

To compare our proposed step size selection from Sec. 5 with the commonly-used exponential learn-
ing rate decay, we performed a simple experiment training GoogLeNet. Both the learning rate and
threshold c on the square Fisher norm, is decayed by a factor of 0.96 after every 3200 iterations.
The results of this experiment are plotted in Fig. 8, and indicate that our method outperforms the
standard baseline.

C AUTOMATIC CONSTRUCTION OF THE K-FAC COMPUTATION GRAPH

In recent years, deep learning libraries have moved towards the computational graph abstraction
(Bergstra et al., 2010; Abadi et al., 2016) to represent neural network computations. In this section
we give a high level description of an algorithm that scans a computational graph for parameters for
which one of the various Kronecker-factored approximations can be applied, locates nodes contain-
ing the required information to compute the second-order statistics required by the approximations,
and then constructs a new graph that computes the approximations and uses them to update the
parameters.

For the sake of discussion, we will assume the computation graph is a directed bipartite graph that
has a set of operator nodes doing some computation, and some variable nodes that holds inter-
mediate computational results. The trainable parameters are stored in the memory that is loaded
or mutated through read/write operator nodes. We also assume that the trainable parameters are
grouped layer-wise as a set of weights and biases. Finally, we assume the gradient computation
for the trainable parameters is performed by a computation graph (which is usually is generated via
automatic differentiation).

In analogy to generating the gradient computation graph through automatic differentiation, given an
arbitrary computation graph with a set of the trainable parameters, we would like to use the existing
nodes in the given graph to automatically generate a new computation graph, a “K-FAC computation
graph”, that computes the Kronecker-factored approximate Fisher blocks associated with each group
of parameters (typically layers in a neural net), and then uses them to update the parameters.

16

Published as a conference paper at ICLR 2017

To compute the Fisher block for a given layer, we want to find all the nodes holding the gradients of
the trainable parameters in a computation graph. One simple strategy is to traverse the computation
graph from the gradient nodes to their immediate parent nodes.

A set of parameters has a Kronecker-factored approximation to its Fisher block if its corresponding
gradient node has a matrix product or convolution operator node as its immediate parent node. For
these parameters, the Kronecker factor matrices are the second-order statistics of the inputs to the
parent operator node of their gradient nodes (typically the activities A and back-propagated deriva-
tives Ds). For other sets of parameters an exact Fisher block can be computed instead (assuming
they have low enough dimension).

In a typical neural network, most of the parameters are concentrated in weight matrices, that are
used for matrix product or convolution operations, for which one of the existing Kronecker-factored
approximations applies. Homogeneous coordinates can be used if the weights and biases of the
same layer are annotated in the computation graph. The rest of the parameters are often gain and
bias vectors for each hidden unit, and it is feasible to compute and invert exact Fisher blocks for
these.

Kronecker factors can sometimes be shared by approximate Fisher blocks for two or more parame-
ters. This is the case, for example, when a vector of units serves as inputs to two different weight-
matrix multiplication operations. In such cases, the computation of the second-order statistics can
be reused, which is what we do in our implementation.

A neural network can be also instantiated multiple times in a computational graph (with shared pa-
rameters) to process different inputs. The gradient of the parameters shared across the instantiations
are the sum of the individual gradients from each instantiation. Given such computation graph, the
immediate parent operator node from the gradient is a summation whose inputs are computed by the
same type of operators. Without additional knowledge about the computation graph, one approxi-
mation is to treat the individual gradient contributions in the summation as statistically independent
of each other (similarly to how gradient contributions from multiple spatial locations are treated as
independent in the KFC approximation (Grosse and Martens, 2016)). Under this approximation, the
Kronecker factors associated with the gradient can be computed by lumping the statistics associated
with each of the gradient contributions together.

Our implementation of Distributed K-FAC in TensorFlow applies the above the strategy to auto-
matically generate K-FAC computation graphs without requiring the user to modify their existing
model-definition code.

17

	Introduction
	Background
	Kronecker factored approximate Fisher
	Approximate Natural Gradient using K-FAC

	Distributed Optimization using K-FAC
	Asynchronous Fisher block inversion
	Asynchronous statistics computation

	Doubly-factored Kronecker approximation for large convolution layers
	Factored Tikhonov damping for the double-factored Kronecker approximation

	Step size selection
	Experiments
	CIFAR-10 classification and asynchronous Fisher block inversion
	ImageNet classification
	GoogleLeNet and Batch Normalization
	AlexNet and the doubly-factored Kronecker approximation
	Very deep architectures (ResNets)
	Mini-batch size scaling properties

	Discussion
	A cheaper Kronecker factor approximation for convolution layers
	Experimental evaluation of the step-size selection method of Section 5
	Automatic construction of the K-FAC computation graph

